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Abstract

Ambient Intelligence (AmI) environments continuously monitor individuals’ context
such as locations, activities, et cetera. The purpose of this is to make existing applications
smarter, so they can make decisions without requiring user interaction. Such AmI smartness
ability is tightly coupled to quantity and quality of the available context. Keeping in mind
that there is a chance that their privacy is violated, it is not likely that people are willing to
accept an environment in which many actions and the behavior of people are sensed to make
a smart AmI possible. The goal of our research is to make a compromise between privacy
and smartness in the AmI, by introducing policies in which donors can regulate the life cycle
of their context data. We believe that, by giving the full control on their privacy to the donors
of the context, will help the Ambient Intelligence being accepted by the public.

In this thesis, we propose to bind user specific Life-Cycle Policies (LCP) to context data
regulating its progressive degradation. We investigate the problem of correctness of the LCP
model when used to implant one-way degradation (ensuring that degraded information can
no longer be recovered from the current database content). Finally, we show the feasibility
of the proposed techniques by implementing a prototype on top of a traditional relational
database.
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Chapter 1

Introduction

“Ambient Intelligence represents a vision of the future where we shall be surrounded
by electronic environments, sensitive and responsive to people. Ambient intelligence
technologies are expected to combine concepts of ubiquitous computing and intelligent
systems putting humans in the centre of technological developments.”[11]

1.1 Background

Ambient intelligence is the future, or at least, it could be the future. An (electronic) environ-
ment can only be intelligent if it has enough data, or information, about the entities within
that environment and especially the human being which should be in the centre of this. With
different kinds of techniques, for example (RFID [23])-sensors and camera’s, it is possible to
sense a person’s behavior, movements, et cetera. However, history shows a negative tendency
concerning abuse of private information and a lack of security considerations while handling
people’s private data [2, 17].

In general, most people are not very willing to supply information to (for example)
websites, because they are worried that their information will be used for spam and other
kinds of abuse [9]. According to a poll in 2000, 84% of the Internet users are concerned
privacy sensitive information is gathered and used for unknown matters [19]. There are
policies which could be adopted by websites, which ensure privacy for anyone who supplies
information (for example customers). A set of standards, called 3 [32], allows companies
to declare these policies regarding privacy, upon which customers can agree (or disagree).
Those companies are then responsible for conforming to their own policies, and therefor
preserve the privacy of their customers. It is argued that such 3 protocol is not sufficient
enough. You have to trust that the policy is clearly (and not ambiguously) specified, you are
never sure if the company is really applying the policy, and you have to trust the company is
technically capable of ensuring privacy at all [1]. A good survey of the disadvantages of the
3 platform can be found in the work of Bertino et al [5].

In the following section we will give some examples of (possible) privacy violations,
which kind of impact they could have, and what caused the privacy violations. Those exam-
ples show that privacy could really be an issue. We think that privacy violations in the past
could have an impact on how people will view the prospect of being monitored by a huge
amount of sensors in the future.

This thesis will focus on the design and implementation of a data gathering and storage
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mechanism, in which donors of the data have full control over what data could be collected
when and where, in what form the data is stored and what the life cycle of that data should
be. In our research we will choose a different approach than the traditional access control
mechanisms, because we think the only way to prevent privacy sensitive data to be retrieved
by unauthorized individuals, is to remove the data when possible. This philosophy is based
on a very simple example. In the real world, footsteps will leave a footprint. When the
footprint is fresh, some details can be derived from the footprint, perhaps even the identity
of a person who has left the footprint. Depending on time and the situation (like surface,
density of people, et cetera),the footprint will fade away, leaving less detailed information
behind. Our research will focus on this principle.

1.2 (Possible) Privacy violations

In this section we will try to sketch the problems with privacy in combination with services.
First, we will show the dangers with respect to privacy violations that are issued by new
webservices. Second, we will show, by means of some examples, the difficulties introduced
by health care. Third, we will address some of the developments in the way the EU deals
with privacy involving data storage. Those examples are meant to give an indication to what
extend those possible privacy violations can influence future developments of the Ambient
Intelligence. After that, we will have a look at possible black scenarios for the Ambient
Intelligence itself.

1.2.1 ‘Traditional’ privacy issues

Google

We start our survey of possible privacy violations with Google. Google is well known because
of its successful search engine which is now one of the most used search engines in the world.
Currently Google earns its money by selling Adwords, which are payed search engine results.
If someone issues a query to Google’s search engine, Google presents, together with the
normal search results, also sponsored advertisements. The company which has the highest
bid on a particular keyword will be placed highest in the search results on that keyword.

Since some years, Google is starting to launch a large number of new (free) services,
like GMail, Google Earth, Google SMS, and so on [33]. Recently Google launched Google
Analytics, a tool to monitor websites and measure the effects of promotional campaigns.
With all those services, Google is able to collect a huge amount of data about their users [8],
including privacy sensitive information. However, privacy advocates claim that Google does
have the ability to build very detailed profiles of their users, which implies that there is a
huge privacy risk [27]. For example: because of the free available Analatycs software, it is
possible for website owners to store information about every visit of a website per individual.
This information is stored on the servers from Google. If the monitored individual also has a
GMail email account, Google is able to crosslink the visited websites with information from
the individual’s emails and account information. Moreover, if the same individual uses the
search engine, the used queries can be stored in the profile.

Of course, Google itself disagrees with that they are up to violating the privacy of their
users in their privacy statement [12]. Indeed, the commonly used slogan by Google is ‘Don’t
be evil’. However, the same privacy advocates as mentioned above state that Google doesn’t
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give any guarantees that they will not misuse the gathered information in the future. What
will happen if the databases are hacked, or what will happen if an employee, with access to
the data, is payed to handover the profiles? Huge amounts of privacy sensitive data could
be disclosed to parties which can make misuse of it.

Example: A student wants to have some information about HIV, because of
a project on his school. He knows that HIV is a sexual exchangeable disease,
and that the disease is relative often be spread by gay persons. So, unknown
where to start, he types in the queries ‘information about hiv’ and ‘gay sexual’.
Indeed, the last query is not likely to give the results he looked for. Naive as
the person is, he clicks on a result link and enters a gay porn site which is
monitored by Google Analytics. The student also has a GMail account. With
the GMail account, he has send an email with is curriculum vitae to a possible
employer.
Now imagine that the profile of the student has become publicly available,
and a possible employer can search through this profile. Although, at least in
the Netherlands, it is completely legal to be gay, and the student even isn’t
gay at all, to be gay is not always commonly accepted. The employer doesn’t
want to take any risks, and decides not to give the job to the student.

Very recently, the government of the USA demanded the disclosure of data stored by
Google [25]. This data includes the queries which visitors of the Google search engine use to
search the web. Currently, at the time of writing, Google refuses to disclose this information.

Health services

To be able to give persons the health care they need, a lot of privacy sensitive information
could be needed and is therefor gathered by hospitals, insurance companies, et cetera. Infor-
mation which could be misused by others, but also information which people simply doesn’t
want to share with others because it could have a negative social impact.

Regrettably, there are many examples of privacy violations in health and human ser-
vices [16]. Some examples are (directly copied from the HIPAA privacy and security website):

• The medical records of an Illinois woman were posted on the Internet without her
knowledge or consent a few days after she had been treated at St. Elizabeth’s Medical
Center following complications from an abortion at the Hope Clinic for Women. The
woman has sued the hospital, alleging St. Elizabeth’s released her medical records
without her authorization to anti-abortion activists, who then posted the records online
along with a photograph they had taken of her being transferred from the clinic to the
hospital. The woman is also suing the anti-abortion activists for invading her privacy.
(T. Hillig and J. Mannies, ”Woman Sues Over Posting of Abortion Details,” St. Louis
Post-Dispatch, July 3, 2001, p. A1).

• New York Congresswoman Nydia Velasquez’s confidential medical records – including
details of a bout with depression and a suicide attempt – were faxed from a New York
hospital to a local newspaper and television station on the eve of her 1992 primary. After
overcoming the fallout from this disclosure and winning the election, Rep. Velasquez
testified eloquently about her experiences before the Senate Judiciary Committee as it
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was considering a health privacy proposal. (A. Rubin, “Records No Longer for Doctors’
Eye Only,” Los Angeles Times, September 1, 1998, p. A1)

• In Tampa, a public health worker walked away with a computer disk containing the
names of 4,000 people who tested positive for HIV. The disks were sent to two news-
papers. (J. Bacon, “AIDS Confidentiality,” USA Today, October 10, 1996, p. A1)

These examples, in which human mistakes or actions directly cause the privacy violations,
make clear that privacy violations not always are due to a lack of technical security. Money,
human emotions, career prospects, et cetera could be reasons to violate privacy of individuals
(like political opponents). Only if privacy sensitive data is actually removed when it isn’t
needed anymore, above violations could have been prevented.

However, the question is to which degree parts of medical reports could be removed. A
history of health related issues can be important for further treatments, so it is likely that
it is needed to keep this privacy sensitive information to be able to ensure good services.
Details of the treatment, or parts which are too privacy sensitive and which are not needed for
future treatments could however be removed. People must be able to decide for themselves
in which extent they want to exchange privacy for the best possible service. However, it has
also been argued that you cannot know in advance wetter or not there will be situations in
which you wanted your medical record had been available: “Should I be knocked unconscious
in a road traffic accident in New York please let the ambulance have my medical record.” [20]

Data storage law in the European Union

In 1949, George Orwell published his novel 1984 with it’s central theme ‘Big Brother is
watching you’. In this book, a totalitarian state controls every aspect of life.

The European Union is not a totalitarian state, and hopefully it never becomes such a
state. However, the recent developments around a law proposal which orders the storage of
all telecommunication data are quite disturbing with respect to possible privacy violations.
The proposal defines the storage of all telecom and Internet data, including calling, emailing,
SMS-ing, geographical locations and so on of all citizens of the European Union for at least
12 months. With this proposal, a huge collection of privacy sensitive data about all people
living in the EU could be build. With access to this collection, all social contacts between
humans could be tracked. This data must be available to help in the efforts of the EU to fight
against terrorism [24].

The EU itself recognizes the possible effect on privacy laws, but claims that “the interference
with these rights is justified in accordance with of Article 52 of the Charter on Fundamental rights.
Specifically, the limitations on these rights provided for by the proposal are proportionate and necessary
to meet the generally recognised objectives of preventing and combating crime and terrorism.” [24].

With respect to our research, one particular remark can be made from this statement. The
EU offers their citizens the service fight against terrorism in return for privacy. Citizens do
not have any control over how, how long, and which data with how much detail is stored.
They have to trust that data is stored secure, and that only authorized institutes have access
to the data. Which institutes are authorized is not clear. If the data will be misused, and
privacy is violated for the wrong goals, people could possibly become very suspicious when
the ambient intelligence is introduced, with even more sensors and collection of privacy
sensitive data.
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1.2.2 Black scenarios for the Ambient Intelligence

In the preceding section we gave examples of possible privacy violations. These scenarios
are traditional in this sense that they are based on existing technologies and existing privacy
threads. The Ambient Intelligence, and especially the usage of ubiquitous computing facil-
ities, will bring along new privacy threads. We will describe those new privacy threads in
section 2.2.1, in this section we limit ourself to give simple examples of privacy threads which
could occur in future Ambient Intelligence environments. A comprehensive investigation of
possible dark scenarios in the AmI is done by the SWAMI consortium [28]. We use some
examples directly reproduced from their report.

Example: We can imagine, in the future, everyone will have a ‘friend-locater’
function on, for example, his mobile phone. Now imagine the following
situation which could occur to any fictive person:

“In Munich, I experienced an awkward situation after I located a former col-
league of mine using the ‘friend-locater’ function (LBS) of my PWC.33 I just
wanted to say hi, but when I walked up to him, I was surprised to see that he had a
good-looking, younger woman with him who obviously was not his wife. He blushed,
mumbled a few words and disappeared in the crowd.”

This example shows the difficulties with privacy. Suppose that there are standard privacy
policies which state that your location may only be used by friends. In the above example, this
policy would not been strict enough, because there are situations in which you don’t want to
be found by friends. To prevent those kind of privacy violations as showed in the example,
you need more control over your data. The degree of information disclosure depends on
person, context and situation [28].

Example: In an AmI, a lot of services will become available to people, based
on locations, activities, health information, et cetera. To make those services
possible, privacy sensitive information must be supplied to those service.
People may become dependent of those services, making it hard to switch
back if you want more privacy, which is showed by the following (fictive)
scenario:

“I began to make a point of switching off my AmI sensors in public places so
that my preferences could not be revealed and monitored. I’ll leave them on in the
home where I control the environment, or at work where there are confidentiality
clauses protecting us but the moment I step outside I switch them off. A cumbersome
procedure, a real hassle, but it can be done. The downside is that I now find myself
missing out on announcements including the emergencies or special promotions
that I would have liked to take advantage of. Recently, I was in the airport where
I actually found that I was banned from the frequent flyers’ lounge because their
sensors objected to my sensors opting out! Even though I showed them my card, they
still wouldn’t let me in. Can you believe that? Why should I be denied entry? Now I
can see that if I have my AmI sensors off at the airport, there’s a distinct risk that I’ll
be stopped and searched and maybe miss my flight.”
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Above example suggest that without being monitored you will not be able to participate
in any services. In this example, the person is concerned about his privacy and therefor he
decides to stop donating information. If the person had full control over his privacy, he could
decide which services he needed and which not, and be able to make a trade off between
services and privacy.

1.3 Requirements upon privacy in the Ambient Intelligence

In the previous section we showed different kinds of (traditional) situations in which privacy
violations could occur. In an environment in which sensors are collecting data from donors,
it is perhaps even harder to adopt the right of individual donors to determine to what extent
information about them is collected, stored and made useful to applications. A (database)
system that wants to be aware of such a privacy definition, must have some mechanism to
provide limited retention of data from donors. Limited retention means that the donor’s data
only remains in the system as long as the user wants the data to be in the system. Limited
retention techniques are already applied in Hippocratic databases [2] by means of setting
a date specifying when the data must be removed from the system. This principle is also
adopted by the 3 project. More about these techniques in section 2.

A problem arises if we not only consider the need for privacy for the donor, but also the
usefulness of the context data in order to allow applications to become as smart as possible.
Although we want the donor to have control over his privacy, we also want the donor to
hand over as much information as possible, independent of the purposes of the applications.
Hence, we want to find a suitable trade off between privacy of the donor, and smartness of
applications.

1.4 Research context

In the preceding sections so far, we showed some problems and requirements for the Ambient
Intelligence. In our research, we will focus mainly on the trade off between smartness and
privacy. One way to accomplish the privacy and smartness requirements of the Ambient
Intelligence, is not to remove all data at once after a single retention period, but degrade the
data in several steps after several retention periods, with a possible final degradation step
leading to actual removal of the data. Moreover, in stead of retention periods we can imagine
that data could be degraded after the occurrence of an event (e.g., leaving the building). This
degradation steps specify the life cycle of the data. This leads us to the main problem which
this thesis will focus on:

For each acquired piece of data, how to allow the donor to specify a policy, that specifies
the life cycle of that data and how to implement this in an ambient environment by means
of a privacy aware context database.

The advantage of being able to specifying the life cycle of context data can best be illustrated
with an example. Imagine a web shop where customers can order goods which will be de-
livered at the address specified by the customer. For this service, the customer (the donor)
needs to hand over his privacy sensitive address information. After the delivery, this precise
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address is not needed anymore for delivery purpose, but a part of the address (for example
the city) can still be useful for global marketing purposes. Moreover, the ID of the customer
is not needed anymore and can therefor be degraded to only ‘male’ (or ‘female’). In exchange
of this information (which is much less privacy sensitive than the accurate address), the web
shop can offer additional services (for example a discount on the next order). Both parties
are now happy: the customer is more willing to give his privacy sensitive information, and
the web shop is still capable of offering its services.

The introduction of life cycle policies will certainly have an impact on how data will be
stored in a database. This data storage could be quite different from traditional database sys-
tems, which implies that access to this data will also be different. To provide a certain kind
of transparency to applications which will use the data, we want to specify a schema of the
database, with the relations in it as they would appear in a traditional database (for example,
a relation person with attributes (identi f ier, time, context)). Queries executed on this relations
must then be translated to queries on the actual data in the database. More specificly:

How to allow an application to query the data, without knowing the actual data
structure.

1.5 Scope of this study

Although tackling above problems will provide privacy control for the donors, some privacy
principles are left out of consideration. This includes for example the principle of limited
disclosure. There are many (traditional) techniques which could be applied to prevent illegit-
imate access to the database, all based on access control [18]. This is to prevent regular attacks
on the database, but doesn’t prevent human insiders (such as the database administrator) to
simply disclose the data. If data is degraded according to privacy policies, such disclosure
will not lead to privacy violation. Also principles like limited use will not be considered in
this thesis. The limited use principles states that certain peaces of data should not be ac-
cessed more than a predefined number. Although data is degraded to a less accurate level,
this degraded data could still be useful for some services and therefor increasing the overall
usefulness of the data, making the Ambient Intelligence ‘smarter’. Restricting the number of
accesses to this data is in this context not an issue.

Finally, in this research we do not consider attacks on the database which could alter the
data stored in the database. In theory, it is possible to replace the life cycle policies with less
stricter ones, and so possibly violating privacy. This is specified by the safety principle of
Hippocratic databases.

1.6 Performance and implementation requirements

Preserving privacy to the donors of data has our main concern. Maintaining some perfor-
mance of the database (for querying, inserting, updating the data, ACID properties, et cetera)
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is also important if we want to make our approach feasible. A context database (and especially
our privacy preserving context database) will have normally three tasks:

Inserting new context data, for example locations, mostly from sensors or other inputs
connected to the database. The context database must be fast enough to handle incoming
locations, so that no information is lost due to a denial of service of the context database.

Updating context data to comply with the limited retention principle. The context database
must be able to handle the privacy policies specified by the donors at all time, with
eventually an acceptable delay.

Querying the context data must be possible, so that application can use the context data and
privacy policies are not offended.

After implanting life cycle policies, the context database must still be able to perform those
task sufficiently.

1.7 Organization of the thesis

This thesis is organized as follows. We start with an overview of related work on the topic
of privacy protecting, and some work from the ongoing ambient intelligence research. In
Chapter 3 we give a detailed description of our approach by presenting the life cycle policy
model. In this Chapter we will give a formalization of our model, some motivating examples
and problems with our approach. In Chapter 4 we show the feasibility of our approach by
presenting a performance and implementation study. We build a small prototype of LCP-
enabled databased on top of a traditional relational database. We finalize with a discussion
about open main issues and future work, followed by a conclusion.



Life-Cycle Privacy Policies for the Ambient Intelligence 9

Chapter 2

Related work

“Privacy is an Interaction, in which the information rights of different parties collide.
The issue is of control over information flow by parties that have different preferences over
‘information permeability’.” – Eli Noam

2.1 Related work based on access control

In this section, we will give a brief overview about the traditional work based on preserving
privacy with the use of access control. Throughout this thesis, we will use the term access
control to refer to this traditional techniques. Although we call these techniques ‘traditional’,
still a lot of research is done to improve the techniques or to find new access control based
methods.

2.1.1 P4P

The P4P framework returns the responsibility of maintaining privacy to the ‘people’. Instead
of providing information such as email addresses, an identifier to that information (which
is maintained by a personal agent) is sent to the website/shop/whatsoever who asked for it.
If the web shop wants to use the email address, it sends a request to the agent, which could
forward the request to the owner, or reply according to a specified policy. The agent can
determine if the request is valid, or, for example, an identifier is shared with other companies
and therefor a limited disclosure property is violated. Although the P4P framework returns
privacy control to the donors who supply the information, for several practical reasons it is
very hard to adopt it in an ambient environment. The P4P architecture is client-server, or
even client-client based, and therefor not centralized. If privacy sensitive data is needed from
several persons, each client of the person has to agree with the data request. It isn’t hard to
see that such architecture is not sufficient for statistical surveys, or learning algorithms which
need fast access to large data sets.

2.1.2 Encryption

One traditional approach for preserving privacy, is to store the data encrypted, in such a way
that most of the querying could be done at the server (without decrypting the data) [14].
Encrypting is done by encrypting the tuple (represented as a string, with the use of standard
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Figure 2.1: Simplified architecture of a database storing encrypted data and a set of clients

encryption techniques), and map the attributes of the tuple into non-overlapping ‘buckets’.
Only a client can decrypt the data, so privacy can be controlled by those who controls the
client (which could be delegated to an agent of the donor of the data).

The architecture of such system consists of three fundamental entities: a user, a client
and the server. The client encrypts data and stores this encrypted data on the server, and
maintains metadata to be able to translate queries from the user into queries which can be
executed over encrypted data. Result sets returned from the server will be post-processed by
the client and returned to the user. A more comprehensive explanation can be found in the
work of Hacigümüş [14].

As for the P4P approach, this approach is only useful when only data must be accessed
from one client. In an environment with many users and queries which include data of many
persons, this approach is not possible.

2.1.3 k-Anonymity

An other kind of privacy violation which we not mentioned before, but which has occurred
many times in history, is the combining of two public databases, which on first glance does
not contain data which could be tracked down to individuals. Combining of public databases
could result in a privacy violation because of the possible presence of a shared quasi-identifier.
A zip-code in combination with a birthday is one example of such a identifier. k-Anonymity
algorithms could solve these kinds of problems [31].



Life-Cycle Privacy Policies for the Ambient Intelligence 11

Race Year of Birth Gender ZIP Problem
Black 1965 m 02141 short breath
Black 1965 m 02141 chest pain
Black 1964 f 02138 obesity
Black 1964 f 02138 chest pain
White 1964 m 02138 chest pain
White 1964 m 02138 obesity
White 1964 m 02138 short breath

Table 2.1: Example of k-Anonymity, with k = 2 and the quasi identifier = (race, Birth, Gender, ZIP)

The basic idea of k-Anonymity algorithms is to create an anonymized, public copy of
the database. In this public copy, data is manipulated such that the data is not privacy
sensitive anymore. A k-anonymized databases guarantees that a certain piece of privacy
sensitive data can only be resolved to a possible set of k different persons. An example
(from [30]) is given in Table 2.1. In this example, the tuples sharing the same quasi identifier
(QI = {Race,Birth,Gender,ZIP}) have at least k = 2 occurrences.

2.1.4 Hippocratic databases

In 2002, Agrawal et al. provided a new vision about preserving privacy by means of a
hippocratic database [2]. They provide a set of privacy principles, which should be adopted
by a database which stores privacy sensitive data. Main focus is to return the control over
privacy to the one who provides the data (in context of hippocratic databases called donors),
because it is believed that ambient intelligence only will be accepted when donors don’t
have to be scared that all there actions, behavior and goings could be misused by the wrong
people [10].

Hippocratic databases must comply with ten founding principles, which mostly refer to
commonly used privacy statements of governments. We give a short overview of some of the
ten principles mentioned. The ten principles are: purpose specification, consent, limited collection,
limited use, limited disclosure, limited retention, accuracy, safety, openness and compliance.

Purpose specification simply states that the purposes for which applications are allowed to
access the data must be attached to the data, which will have consent of the donor. Limited
collection implies that the stored data is the minimal set of data needed to accomplish the
specified purposes, and that unnecessary data will not be stored. The limited use principle
states that only those queries which are consistent with the purposes could be executed.
Limited disclosure will say that data could not been accessed or communicated outside the
database if there is no consent of the donor. Data should only remain in the database until
the purposes are fulfilled, which is specified by the limited retention principle.

The final principles to adopt are openness and compliance. Openness will say that donors
must be able to access all information about them in the database. Finally, a donor should be
able to verify compliance of the database with all ten principles.
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2.1.5 Fine-grained access control

In recent privacy related research, the interest in fine-grained access control is more and more
increasing. Recent work [6, 5] about this topic shows a view-based approach to accomplish
fine-grained access control. With fine-grained access control, donors should be able to define
which parts of data with which accuracy can be disclosed to whom with what purpose.
According to these parameters, views of the data are made public to applications which could
query those views. Data generalization techniques are used to decrease the accuracy of a
value, but keeping the semantics of the data consistent.

The privacy policies are stored as meta-data together with copies of all levels of generalized
values of the privacy sensitive data. When a query is submitted to the database, the data set
on which the query is executed will be constructed according to this meta-data. The same
queries, submitted by different applications, can therefor return different results.

Problems with this approach are the great amount of storage needed for all copies with
different accuracy, the question on how to specify the policies, and how to generalize the
data.

2.1.6 Platform for Privacy Preferences (P3P)

3 is a standard, developed by the World Wide Web Consortium (W3C), which main purpose
it is to make it possible for visitors of websites to have more control about the data provided
to websites. 3 is a language which could be interpreted by (for example) browsers, making
it possible to compare automatically donors’ preferences and the specified policy.

In the most basic form, a 3 policy answers a set of multiple-choice questions covering a
broad range of privacy principles. An example of a 3 policy is given in Appendix B. With
this policy, a website could ask their visitors if they are allowed to set a cookie. With a cookie,
it is possible to track a visitor, and to store some information for later purposes. The purposes
are described in the policy, as is the retention time. More specific, in the example policy, the
retention period is ’until the purposes are met’.

This example shows directly the weakness of 3. The retention period is very ambiguous:
when is the data not needed anymore to fulfill the purposes (according to the policy these are:
develop, pseudo-analysis, pseudo-decision, individual-analysis, individual-decision and tailoring)?
Indeed, when presented such policy, a visitor (e.g. the donor) can refuse the policy. But, with
more some flexibility and more specific information, perhaps the donor would have accepted
the policy.
3 policies are a good way to make the privacy measures of companies more transparent

and readable to their customers. The policies do not contain any enforcement mechanism to
make sure companies really try to not violate their own policies.

Compared to 3, the LCP model (which we will discuss in this thesis) shows some
similarities. With 3, it is possible to specify a retention time, after which data must be
removed from the system. Our approach however will be more flexible: it will be possible
to specify intermediate steps, letting the system remove parts of the data and/or change the
accuracy of the data. However, with some changes, it could be possible that the 3 standard
will make this kind of policies possible. Another difference is the point of view of the 3
standard compared with our LCP approach. 3 policies are initially specified by companies
which offer a certain kind of service. A user can decide wetter or not he accepts the policy.
With our LCP approach, we have a broader view: we let the donor specify a general policy
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which must be applied on his data. When specifying his policy, the donor must keep in mind
which kind of applications could use his data, and how much he wants to give up his privacy
in exchange for more possible services. This is more in the spirit of ubiquitous computing
and the Ambient Intelligence which will discuss in the next section.

2.1.7 Privacy-Preserving Data Mining

Data mining is all about finding non-obvious information in large data sets. Those data
sets could contain privacy sensitive information of individuals. For most data-mining ap-
plications, values in individual tuples do not have much interest, only statistical functions
(aggregate functions like sum, avg, etcetera) are useful. If the individual values could be
altered in such way that estimating the original value is nearly impossible, without having
a (or only a little) affect on the statistical calculations, privacy could be preserved without
losing functionality.

Agrawal and Srikant [3] describe methods to add a randomized value (from a uniform or
gaussian distribution of values) to the original value, and/or divide the values into distinct
non-overlapping classes. They describe algorithms to recover the original dataset, and show
that this could be done with high accuracy and different gradations of privacy protection.

2.2 Ubiquitous computing and the Ambient Intelligence

In the following section, we will discuss ubiquitous computing and the ambient intelligence
with descriptions of privacy threads and observations found in related work.

2.2.1 Ubiquitous computing

With the introduction of ubiquitous computing, new privacy related issues arose. One of the
main difficulties with privacy in the ubiquitous computing, is the way how data is collected.
When making a transaction with a webshop, it could be quite clear which kind of data is
exchanged. Ubiquitous computing techniques however, such as small sensors or cameras
equiped with powerful image recognizing algorithms, often collect data when people are
not aware of it [19]. In that case it is possible that people think they are in a closed private
area (such as coffee rooms), but in reality they could be monitored by sensors in that room
where they not aware about. Moreover, due to increasing storage capabilities and capacity,
it is easier to keep data longer, enabling more data mining possibilities, with the danger of
making wrong interpretations of data because the data is far out of context.

Ubiquitous computing leads to an effect named asymmetric information, a term from eco-
nomics which state that one side from a transaction has less information about the transaction
and the information involved than the other side. In the context of ubiquitous computing,
this will say that the owner of the data (the donor) has less information than the collector of the
data [19]. Xiaodong et al gave an example which show the effect of asymmetric information:

Example: Imagine a situation in which a neighbor makes loud music at 3 AM
in the morning. In normal social environments, the neighbors will not tolerate
this and will consider (social) sanctions. Loud music can be easily detected,
making it possible to take action upon the violations of social norms.
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With ubiquitous comping, it is more difficult to detect if, how, and why your privacy is
violated. When violations are discovered late, it makes it harder to take action, which is a
negative effect caused by the asymmetric information principle.

Xiaodong et al state that the presence of asymmetric information is the heart of the
information privacy problem in ubiquitous computing. In environments with significant
asymmetry between the information knowledge of donor and collector/user, negative side
effects as privacy violations are much harder to overcome. Based on these observations, Xi-
adong derived the following principle called the Principle of Minimum Asymmetry:

A privacy-aware system should minimize the asymmetry of information between data owners
and data collectors and data users by:

• Decreasing the flow of information from data owners between data collectors and users

• Increasing the flow of information from data collectors and users back to data owners

Also Langheinrich [20] specified in his work four properties of ubiquitous computing
which make ubiquitous computing different from previous privacy threads. Shortly summa-
rized they are:

Ubiquity: the goal of ubiquitous computing is to be everywhere, affecting large parts of
people’s life

Invisibility: sensors disappear from our view, making it hard to know when we are moni-
tored or not

Sensing: due to increasing technical performance, sensing abilities are improved making it
possible to sense even emotions and actions, et cetera.

Memory amplification: with increasing sensing capabilities, it is feasible that it will be even
possible to build a record of people, allowing browsing in a fairly complete history,
acting like a memory amplifier.

A concrete example of one form of ubiquitous computing is location tracking. Görlach et
al made an survey about privacy threads in this specific range of ubiquitous computing [13].
With new and some older technologies like GPS in combination with PDA’s, active badges,
signal strengths in wireless LAN and triangulation measurements with cell phone networks,
RFID chips, et cetera, it is nowadays not difficult to build tracking systems which could con-
tinuously monitor peoples’ locations. Location information could be very privacy sensitive,
for example, one’s religion could simply be derived by knowing to which church he goes [13].

Görlach et al specified three kinds of privacy threads: by first-hand communication, by
second-hand communication and by observation. With first-hand communication, an attacker
makes use of vulnerabilities of a device and breaks into it, or because of the specification
of device itself, some information can directly obtained from the device. With second-hand
communication, information which is not longer under control of the owner is communicated
to an unauthorized party. This happens when, for example, a web shop sells his customer
information to third parties. The last privacy thread is caused by observation. With observation,
an attacker makes observations himself with the use of camera’s our other imaging devices.
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Chapter 3

The Life Cycle Policy model

au · tom · a · ton

Latin, self-operating machine, from Greek, from neuter of automatos, self-acting

3.1 The Ambient Intelligence environment

3.1.1 Architecture description

As shortly mentioned in the introduction, in an ambient intelligence (AmI) people are sensed
by sensors and therefor become donors of context data. In our vision, donors should be able to
choose or specify their own policies, describing the life cycle of their sensed, privacy sensitive
data. Those policies could then be bound to the data so they can be processed by the context
database, but possibly also by other components in the ambient environment such as data
caches of applications. In an environment in which applications query the database, it is
likely that applications will cache the data for more performance. To make it possible that
data, although not longer managed by the context database, could be degraded compliant
with the specified policy, those policies must always stay bound to the data. How to enforce
that applications or other components in the AmI apply the policies is a huge challenge.

Figure 3.1 shows a possible architecture of an AmI-space. In this architecture we suppose
that there is one centralized context database storing all donors’ sensed data per AmI-space.
An AmI-space is one collection of connected sensors, applications and possible other com-
ponents needed in an ambient intelligence belonging to one environment (e.g., a building).
There are several AmI-spaces which may or may not overlap each other. If donors move
to an other AmI-space, it must be possible to transport the corresponding data (and the
corresponding policies) to the new AmI-space. This leads to distribution problems which are
further discussed in section 3.8.

Instead of a centralized database we could also use an decentralized approach where
context data is stored at devices of donors. This architecture is proposed by Aggarwal et
al. in the P4P ‘privacy for the paranoids’ vision project [1]. However, from an application
point of view a centralized approach is better for limiting the number of interactions with
donors, which in an ubiquitous environment is desirable. Also in terms of performance is a
centralized approach more likable.

Finally, a policy translator is placed before the context database to translate the policies
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to, for example, SQL language.

In this thesis we will focus mainly on the context database, although the LCP-model we
propose should also be applicable to other components. We will present an evaluation of
an implementation of the LCP-model on top of a traditional Postgres relational database
management system in section 4.
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Figure 3.1: Possible general architecture of an AmI-space

3.1.2 Events

Before presenting a model for describing life cycle policies, we first make a distinction
between different types of events which may occur. We will see that different types of events
imply different kinds of problems. The three types of events are external events, internal events
and universal events:

internal events are events which can be monitored within the boundaries of the current
AmI-space. Those events are normally triggered by actions of donors.

external events are events which appear outside the current AmI-space.

universal events are events which can be monitored always and everywhere, with the nice
property that there is no donor-specific context data needed to monitor such events.
One example of universal events are time events.

Examples of internal and external events are events like ’I left the building’, or ’some person
is in the coffee room’. To be able to know when such an event has occurred, context data
of the donors which are subject of the event must be available in the AmI-space, which is
normally the case. However, if someone is within an AmI-space and specifies an event in his
policy which can only be sensed in an other AmI-space (external events), a problem arises.
More about this in section 3.8.
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3.2 Formalization

3.2.1 Context states and domain generalizations

Information sensed by the Ambient Intelligence can be presented by a triplet (time,id,context),
where context represents context data like location, temperature, activity, etcetera. Each ele-
ment of an instance of such a triplet can have a different level of accuracy. For example, one
instance of the triplet (time, id, location) could be the triplet (2005-12-06 12:15, 2178, Zilverling),
having accuracy minute, id and building respectively. A triplet containing the accuracy-levels
of data corresponding to that triplet is called a context state. Each element of a context state is
called a dimension of the context state. This term will get more body in the next section.

The representation of data with different levels of accuracy is also known as data general-
ization [15], which is applied in many traditional database systems. Figure 3.2 and Figure 3.3
show two concept hierarchies of the person and location dimensions. We assume that the
knowledge needed to make a generalization step is contained in the ambient intelligence
itself.

3.2.2 Cubical representation of context states

The complete set of possible context states can be represented by a cube (see Figure 3.4).
This cube consists of three dimensions, with the first two axes representing the time and
id dimensions. The third axis represents the context dimension. Throughout the thesis we
will use location as the context dimension. The axes are divided into respectively nt,nid and nl
distinct regions, with each region n+1 representing a less accurate value than region n (we say
that the granularity of the dimension is n). This will divide the cube into (nt × nid × nl) context
states representing different levels of accuracy. Each context state can now be identified with
the triplet (t,id,l), with 0 < t ≤ nt, 0 < id ≤ nid and 0 < l ≤ nl.

Example: The context state S = (4, 1, 1) denotes the context state
(day,GUID,coordinates) in the cube of Figure 3.4. A possible data triplet t ∈ S
could be (2005-12-06,s0002178,(11,51)).
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Figure 3.4: A Cube with 3 dimensions and 4 × 4 × 4 sub-cubes. The arrows indicate the steps of a
simple life cycle policy described in section 3.2.3

Note that the cubic representation of the data is already used in, for example, data
warehouses to represent the result of a query [7]. The main difference with our representation
is that each dimension takes different data accuracies linked to a given domain of values,
ordered from the more accurate (e.g., exact coordinates for location) to the less accurate (e.g.,
building), instead of representing an ordered set of discrete values (e.g., years) or interval
(e.g., age between 0-10) having the same accuracy.
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3.2.3 The LCP model

In this section we present a way to model Life Cycle Policies (LCPs). A LCP must have two
main properties:

1. it must specify how data must be degraded

2. it must specify when data must be degraded

A LCP species when data must be degraded to which accuracy. We propose to implement
a LCP as a set of context states, combined with descriptions about how and when a context
state is reached. A step in the policy means normally (at least in an one-way policy 1) degra-
dation of data (decreasing the accuracy of data corresponding to the policy). More specific,
a step in a LCP is defined as a transition from one context state to another context state. We
say that state S is more accurate than state S′, if at least one of the three dimension of S′ has
a lesser accuracy than state S, denoted as S D S′:

Si −→ Si with S j D Si

A transition may only occur when an event happens. Different types of events have al-
ready been described in section 3.1.2. We now first present an example of how to model a
LCP with the use of a deterministic finite automaton [29]:

Example: The following LCP specifies that at construction time, data (from
a sensor) is stored in the most accurate form: time in milliseconds, a personal
identification number and the exact coordinates of his position. After 10
minutes, at time t1, the data is degradated to a less accurate form: now only
the time in hours will be kept in the database. Again, after 1 day (t2), the
data will be degradated to another level. Now only the building where some
person from a certain university was in a certain hour could be derived from
the system.

S = {s0, s1, s f } = {(1, 1, 1), (4, 1, 1), (4, 4, 4)}
Σ = {t1, t2} = { after 10 minutes, after 1 day }
δ(s0, t1) = s1
δ(s0, t2) = s f (*)
δ(s1, t1) = s1 (*)
δ(s1, t2) = s f

(*) Note that those transitions are only meant to make the automaton fully determin-
istic. However, from the nature of absolute time values we are sure that those transitions will
never take place, and therefor can be omitted.

The above LCP is one particular instance of an automaton. We now define a LCP as:

LCP =
(
S,Σ, δ, s0, s f

)
S is a set of context states written as a triplet (t, id, l), Σ a set of events, δ a set of transi-
tion functions S × Σ → S, s0 the start state (also called the construction state) and s f the final

1More about this property in section 3.2.4
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state of the degradation process, where s f = {∅} indicates removal of the context data from
the system.

An automaton can be represented by a labeled directed acyclic graph [29]. The nodes of such
graph are elements of the set of states Q, the labels are elements of Σ, in such way that an
arc from si to s j is labeled a if s j = δ(si, a). A DAG of the LCP of above example is given in
Figure 3.5. The arrows in Figure 3.4 of the previous section illustrate the path in the Cube
corresponding to this LCP.

(1,1,1) (4,1,1) (4,4,4)

After 10 minutes After one day

After one day

After 10 minutes

Figure 3.5: Example of a degradation policy noted as a DFA

3.2.4 The one-way property

In this thesis, we will only consider LCPs which hold the one-way property. The one-property
has a syntactically meaning and a semantical one. The syntactical form states that it not
possible to specify transition functions which not specify a degradation of data. From a once
degraded value, the previous, more accurate values never can be derived, or stated in terms
of the automaton:

∀(s, e→ s′) ∈ δ : s D s′, with e ∈ Σ

The semantical meaning of the one-way property is that an implementation of a LCP
must respect the one-way property and may not violate it, thus a once degraded value may
never return to its original state. In the following sections we will investigate the difficulties
of realizing this non-violation. We will see that, among other problems, inference problems
must be solved (e.g., inference by closely looking to the policies).

3.3 Motivating examples

In this section we present some motivating examples, proving the usefulness of our model.
We present two different types of examples. First we describe an organization-oriented policy,
a general policy specified by an organization and shared by all members of that organization.
Second we present user-oriented policies, policies which are not shared by others unless two
similar policies are specified by coincidence .

The examples given in this section will be used in the next section to investigate possible
one-way property violations. We will see that especially user oriented policies, but also



Life-Cycle Privacy Policies for the Ambient Intelligence 21

organization oriented policies, possibly lead to several violations of this property.

3.3.1 Organization-oriented policies

To achieve its privacy goal, an organization has to minimize the available (retained) data
within its own information system. One reason to do this from an organization point of view
is to protect against potential spying from other organizations. By restricting the life cycle
of the sensed data, the risk of leaking privacy sensitive information could be decreased. By
using life cycle policies, an organization can parameterize its own information system to only
retain context information which is strictly required in providing the services still needed by
the organization (and so making a compromise between privacy and smartness of services).

Example: Although a company wants to have good privacy regulations, the
company could still require the following services:

1. phone call redirection

2. automatic filling-in daily timetable forms

3. room availability forecasting for the next week

4. statistics in terms of visibility of different teams (for example, the num-
ber of days per week a team is represented by one of its members in the
organization)

To provide the services of the above example with privacy in mind, a LCP (pictured in
Figure 3.6) could regulate employees’ location information acquired by the AmI-space. Fol-
lowing this LCP, the context databases keeps accurate location states (employee ID, precise
acquisition time, and room-identifier) for a few minutes. This short history of still accurate
data is needed for making phone call redirections possible. After a few minutes, the data is
not considered precise enough (for this service only a short history is useful), and therefor
the data could be degraded to hour of acquisition. This accuracy level is enough to allow
automatic fill-in of daily timetables. One day later, the employee’s ID is degraded to team
identifier, still enabling room availability forecast for the next week, and finally, one week
later, the room-identifier is deleted. Now it is still possible to generate statistics about what
day the chance of meeting someone of a certain team is highest.

The last context state is considered as non dangerous for the organization’s privacy, and
can thus be durably kept in the system to enable further statistic computations and long
term historical analysis. Although this LCP is shared by all the employees of the company,
it reduces the amount of context information available in the AmI-space, which could be
accessible in case of a spying attack. Also the employees themselves will feel more comfortable
about being monitored, knowing that their goings and behavior could not be misused, thanks
to the privacy policies of their organization.

3.3.2 User-oriented policies

The primary goal of this research is to increase the available context information to make an
application smarter, by giving full privacy control to donors of data. Normally, when a donor
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Figure 3.6: Example of an organization oriented policy

wants to protect his privacy, he simply objects being monitored, or wants his sensed data to
be removed immediately. However, services available in the AmI-space could require more
context information, which could include privacy sensitive data. For a service to be useful
and to become available for the donor, it can notify a donor and ask for privacy sensitive data
in exchange of the service itself. Donors can than accept or reject this offer, or even negotiate
leading to a LCP which is acceptable for both donor and service. A resulting LCP can be very
rich with much intermediate states, and be different for each donor.

Example: Imagine a traffic environment with donors being drivers of a car.
The AmI-space consists of several possible services, including:

1. a personalized road planner, including traffic jam warnings and direc-
tions

2. a carpool service, based on localization of colleagues

3. a general carpool service, with predictions of best places for being given
a lift

4. a general statistic collection, enabling governmental organizations to
efficiently plan work on the road, traffic jams, etcetera.

A particular donor could consent to the LCP shown in Figure 3.7. Sensed data is stored
in the most accurate form, enabling precise calculation of position, speed and movement
direction. After a few minutes, this accurate history is not needed anymore, and could be
degraded. Now, the current road and time in minutes is available, making it possible for
colleagues to predict carpooling options. This data is stored for one hour, assuming that the
user waits for (a maximum of) one hour to get his car filled before moving on. After one
hour, the personal ID is degraded to type of car. Now it is not possible anymore to track
the movements of the donor, but it is still possible to make general one-week-in-advance
carpool predictions, knowing which kind of cars normally are waiting on which road. After
a week, also the type of the car is degraded (actually removed), keeping the data for gathering
statistical information about road usage. Finally, after one month the data is removed from
the system.

Note that there are many services, needing as much data as possible from as many donors
as possible to become as smart as possible. Data of one particular donor is not necessarily
required for a service to give for example traffic jam information to that donor. However, we
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Figure 3.7: Example of an user oriented policy

assume that services will work with the commonly used principle that you can only make
use of data from others if you are yourself also willing to share your context data.

3.4 Possible one-way property violations

3.4.1 Unexpected information disclosure

If a policy is not chosen carefully, the policy itself might disclose privacy sensitive information.
This problem is inherited from the one-way property itself. Assume we take a snapshot of
a context database, containing all tuples of a given donor with their corresponding LCP
(obviously, this is only possible when the ID is not already degraded). The LCP of a particular
tuple in the snapshot consists of n states {S1,S2, . . . ,Sn}, with Si D Si+1 and n − 1 delays
{d1, d2, . . . , dn−1} specifying when a transition from state Si to state Si+1 takes place. Let ti be
a tuple in the snapshot, element of the set tuples corresponding to state Si (ti ∈ Si). The
following property ∀t j ∈ Si+1, •t j.Time ≤ ti.Time, states that an already degraded tuple is
always inserted before a tuple with a higher accuracy. Knowing this, it is possible to refine
information more than should be possible according to the LCP.

We illustrate this problem with an example, as pictured in Figure 3.8.

(02-02-2006,
Ling)

(02-2006, Ling)

(2006, Ling)

(01-2006, Ling)

(2006, Ling)

After 1 day

After 1 weekAfter 1 week

(30-01-2006,
Ling)

After 1 day

(01-2006, Ling)

(2006, Ling)

After 1 week

(13-01-2006,
Ling)

After 1 day

Figure 3.8: Demonstration of (unexpected) information disclosure
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Example: The tuple that currently is most accurate has been inserted at the
2nd of February. Previous inserted tuples have already been degraded in
such way that one can only derive the fact that the tuple was inserted in the
month ’January’. More specificly, the policy specifies that the correct insertion
date only can be derived with a chance of 1

31 . Because of the existence of
the most accurate value, we know that the degraded tuple has been inserted
somewhere before the 2nd of February, but we already knew that because the
tuple has been inserted in January. We also know that the second degradation
step will occur one week after the insertion of the original tuple. Since the
second tuple is not degraded to the final state yet, we know that the tuple can
not inserted before February 2nd minus one week. The tuple is thus inserted
between 27th of January and 31th January.
Moreover, the least accurate tuple has been degraded to ’2005’, hoping that
the chance to derive the correct month is 1

12 . The actual chance is 1
1 , because

we know that the insertion date was before the 11th of the second month of
the year, but due to the fact that more degraded values with the same LCP as
lesser degraded values are always inserted earlier, also before or in January
2005.

Once you see this ‘problem’ it it is quite trivial. However, it is interesting to see that many
transition times specified by the user must be altered by the system, in order to prevent
information disclosure. One method is to break the property that a degraded value is always
acquired before a non-degraded value. We are able to do this by adding a random value
from the interval

[
−

L
2 ,

L
2

]
to the specified transition time. With increasing or decreasing the

transition time compared to transition times of tuples which are acquired later, it could be
possible that an tuple which is acquired later is degraded earlier.

3.4.2 Inference

In the previous section we mentioned two different types of policies: organization oriented
policies and user oriented policies. In the first case a policy is shared by all members of an
organization. In the second case however, policies could be unique for every donor in the
AmI-space, leading to a serious inference problem.

If every donor has a different policy, then the policy uniquely identifies the donor, making
a policy a possible quasi identifier [31] of the context data. To illustrate this, consider the
following table. In this example we use the policies like those shown in Figure 3.7. Remember
that every donor can specify his own transition times and intermediate states. At first sight

id Values (ID, Time, Value) Current state Remaining LCP
1 (Van, 15-10-2005 11, Street1) (type,hour,road) {s3 → s4}

2 (car3, 15-10-2005 12:37, Street2) (id,minute,road) {s1 → s5 → s6}

3 (car2, 15-10-2005 12:36, Street3) (id,minute,road) {s1 → s3 → s7}

4 (car1, 15-10-2005 12:35, Street4) (type,hour,road) {s1 → s3 → s4}

. . . . . . . . . . . .

Table 3.1: Example of revealing privacy sensitive data
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nothing happens: four tuples are stored, of which three (tuple 2, 3, and 4) are in an accurate
state, and tuple 1 has been degraded. Because tuple 2, 3 and 4 are in an accurate state, the ID
is available in the tuple, not violating any policy. The ID value of tuple 1 has been degraded
to type, so it must not be possible anymore to identify the owner of that car. However, if we
have a close look to the policies associated with the tuples, we see that the remaining policy
of tuple 1 corresponds with the last part of the policy of tuple 4. Assuming that policies of
every donor are unique, and that the same policies are used for each acquired tuple of one
donor, there is a large chance that tuple 1 belongs to the same donor as tuple 4. In that case,
we know that the actual owner of the Van was the owner of car1, violating the one-way
property.

In general, joining on policies can result in a lot of one-way property violation candidates,
even if the policies are not all unique. Using the generalization knowledge expressed in the
policy, one should be able to decrease the possibilities. For example, this could happen when
10 people share the same policy, but only one of them is owner of a Van. Imagine that the
following row is stored in the database, along with the rows from Table 3.1:

id Values (ID, Time, Value) Current state Remaining LCP
5 (Truck, 15-10-2005 11, Street5) (type,hour,road) {s3 → s4}

Table 3.2: Extension of the context data with one additional row

There are now two tuples with the same LCP. Recall that, to be able to degrade to a less
accurate value, the generalization knowledge must be contained in the LCP, thus also in that
of tuple 4. Suppose that the LCP of tuple 4 specifies that car1 must be degraded to Van. Than
we have a good chance that tuple 1 corresponds to tuple 4, and tuple 5 does not.

3.4.3 Database implementation issues

If the data with their corresponding LCPs will be stored in a traditional database (which is
likely to happen), the logging process must be implanted carefully, to make sure that accurate
values might not be recovered from the log files after degradation. In this section we mention
three kinds of issues which must be at least taken into account. First, undo logs are usually
required to provide transactional atomicity (for example, undo aborted transactions) while
allowing a steal cache management policy (report modifications to disk before commit) when
long transactions are performed [21]. However, the benefit of an undo log in the context of
data degradation is limited, because only two processes write to the database. One is inserting
incoming tuples issued from sensors (insertions are performed by the policy translator, see
Figure 3.1) and the second is degrading tuples content as expressed by the LCPs. Both
processes operate by short transactions involving a few statements, or even just a single
statement. Hence, undo logs might be disabled in our settings.

Second, redo logs are required to enforce transaction durability while enabling a no-force
cache management policy (i.e., changes operated by a committed transaction do not require
to be reported to disk immediately, but when appropriate regarding the load on the disk
controller). In our context, final states correspond to non-private data which might be stored
durably in the database. Those states can thus be logged in the redo. However, logging only
final states (and not intermediate states) leads to a reduce of the smartness of the system in
case of media failure, in particular when a very slow degradation process occurs. Instead
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of using logs to achieve durability, we propose to make use of database redundancy, to
duplicate the intermediate states (including their corresponding LCP) in a second database
implementing degradation (without logging), the second database being able to recover
intermediate states in case of media failure.

Finally, we have to be careful that internal indexing or numbering mechanisms don’t
lead to possible violations. For example, every row that is created in the commonly used
PostgreSQL DBMS gets a unique OID, unless defined otherwise [26]. When those numbers
are not chosen randomly, a DBA or someone who has hacked the databases could infer some
knowledge from the order in which the rows are inserted in the database, knowing that some
data precedes others in time, and possibly refine degraded data.

3.5 Complex policies

In our previous examples, we only used transitions based on time. With such automata, we
know which states will be processed in which order. We know that transition ti will take
place after t j if j > i. Thus, if we only use time values, we have a sequential chain of states,
so that if we know the current state, we also know what the next state will be.

With sequential automata and transitions based on time, the alphabet of the automaton
(Σ) is minimal and is equal to the set of all time values T. As defined before, transitions are
functions δ : Q × T → Q, with Q the set of states. We can sort the states s ∈ Q as states
si, s j, . . . sn with n = |Q|, j > i and sn the final state. We say that a state si is always processed
before state s j, if j > i. If we do the same for all transitions t ∈ T, we require that all transition
functions hold the following properties2:

δ(qi, t j) = qi+1, i f j = i (i < n)
δ(qi, t j) = q j+1, i f j < i ( j < n) (*)
δ(qi, t j) = qi, i f j > i (*)

For a complex automaton, above definitions do not hold. With complex automata we mean
automata which are not necessarily sequential, and thus could contain branches. An example
of a complex automaton is given in Figure 3.9. In this example we assume that if event e1
occurs, e2 will not occur. As a consequence, the automaton is not fully deterministic, but this
could easily be solved by introducing an error state or add transitions to a predefined other
state (for example to the final state, or to the current state) [29].

Although we now have branches, we could sort the states so that for some states we could
say wetter or not that state is processed before or after another state. This is not always true
for all states, because we are not sure if a state is being reached. For example, if we look at
the automaton of Figure 3.9, we cannot say that state (3, 1, 1) is processed before or after state
(4, 1, 1). We only can say that if state (3, 1, 1) is reached, state (4, 1, 1) will not be reached.

Complex policies could be well used to expand the possibilities of organization oriented
policies. Hence the example of section 3.3.1. This LCP is meant to comply to the needs of the
services, and to comply with the minimal security and privacy demands of the company. It
is however possible that some individual employees want a more strict degradation schema
in some particular cases.

2Again, transitions marked with (*) are only meant to make the automaton fully deterministic. For time values,
we are sure that those transitions will never take place.



Life-Cycle Privacy Policies for the Ambient Intelligence 27

e1 t1

(1,1,1)

(4,1,1)

(3,1,1)

t1

t1

e2

(4,4,4)

Figure 3.9: Non-sequential degradation policy
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Figure 3.10: Example of an organization oriented policy extended with an user oriented part

Example: The organization oriented LCP of section 3.3.1 is extended with
a branch. A employee does not want that, if he departs earlier than 5 p.m.
through the back door, his employer can see when he actually left. An extra
condition is added to the LCP, so that the time field is degraded to day instead
of hour. See Figure 3.10

We can make a conjecture regarding (most) complex policies:

A branch will mostly only occur when the ID field has not yet been degraded. If the ID field
has already been degraded, a branch will normally not occur.

This conjecture is true for most policies, because events are normally tightly bound to the
donor of the data and the owner of the policy. For example: to monitor that a donor left the
building, and therefor degrade the data, the subject of the event (the donor) must be known.
It is not likely to have a policy like: “When I (with ID 2781) leave the building, degrade my
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Figure 3.11: Example of a decomposition of a sample policy. States are triplets (Time, ID, Location)

data from state (hour,group,room) to (hour,department,building)”. On the other hand, if the ID
is not contained in the policy it is impossible to monitor such an event.

3.6 LCP decomposition

In section 3.4.2 we described the inference problem as a possible violation of the one-way
property. We also defined 2 different kind of policies: organization and user oriented policies.
The motivating examples we gave were all sequential policies, without having branches.
In the previous section we showed how to extend the LCPs with branches, making even
more richer complex policies. We also showed that the inference problem only occurs in the
sequential parts of a complex policy, because after the degradation of the ID dimension there
are no more branches possible.

We saw that the inference problem exists because we can join and match policies. If many
donors share the same policy (as is the case with organization-oriented policies), a policy
is not an identifier and there is therefor no inference problem. In the case of user-oriented
policies it is possible that many donors specify a different policy, and therefor the inference
problem is a serious problem.

In this section we will present a solution, although limited, to the inference problem.
We show that with means of decomposition it is possible to tackle the one-way property
violation. We will also show the limitations of decomposition.

The easiest way to explain decomposition is with an example, shown in Figure 3.11. The
LCP consists of 7 context states {s1, s2, . . . , s7}, with si = (Time, ID,Location) and s7 being the
final state. After transition t2 the ID value is degraded. ID is further degraded after transi-
tions t3 and t4. We therefor can cut the LCP in 4 distinct parts: {s1, s2}, {s3},{s4} and {s5, s6, s7},
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creating 4 new policies which can be inserted into the database separately, attached to the
same piece of original data, as being four autonomous tuples with their corresponding LCP.
As with every policy, the data is inserted with an accuracy as specified in the starting state
of the policy. However, the final state of the first decomposed part has a far lesser accuracy
than the specified final state of the original policy. To make sure no accurate data stays in
the database forever, an additional state is attached to the decomposed parts of the policy,
specifying when the data must be removed from the database. This is not needed for the last
part of the policy, because the final state in that part is the same as for the original policy.
In general, when a original transition specifies that the ID value must be degraded, that
transition in the decomposed part will now lead to a removal of the complete triplet.

More formally, we can define the notion of decomposition as a function D with the
following property: D maps (S, δ) into {{S1∪{∅}, δ1}, {S2∪{∅}, δ2}, . . . , {Sn, δn}}where {S1, . . . ,Sn}

is a partition of S. For each i, δi is the restriction of δ to Si, extended with one pair (s, ∅) for
that s ∈ Si for which δ(s) < Si. In practice, we choose the partitioning in such a way that all
s ∈ Si have the same accuracy in the ID dimension.

Example: A decomposed version of the example given in section 3.4.2 is
showed in Table 3.3. Although we still can make a join on remaining policy,
this will not reveal more information because the remaining policy associated
to a certain tuple is certainly not part of a policy corresponding to a more
accurate value. If it would, than it may because the ID is not degraded at all
and thus not violating the one-way property.

id Values (ID, Time, Value) Current state Remaining LCP
1 (Van, 15-10-2005 11, Street1) (type,hour,road) {s3 → s4}

2 (car3, 15-10-2005 12:37, Street2) (id,minute,road) {s1 → s5 → s6}

3 (car2, 15-10-2005 12:36, Street3) (id,minute,road) {s2 → ∅}

4 (car1, 15-10-2005 12:35, Street4) (type,hour,road) {s1 → ∅}

5 (Van, 15-10-2005 12, Street4) (type,hour,road) {s3 → s4}

6 (Truck, 15-10-2005 11, Street3) (type,hour,road) {s3 → s4}

Table 3.3: Example of a dataset after decomposition

In the next section we will explain why decomposition is only a limited solution.

3.6.1 Additional condition

As said before, decomposition is only a limited solution and can only be applied when the
LCP suits an important condition. The event which triggers a transition must occur in a
sequential order specified in the LCP.

Let L be an LCP. L defines an successor relation between the transitions in L: t is followed
by t′ if there are transitions t1, . . . , tn, such that t = t1, . . . , t′ = tn is a path in L.

Definition: Condition X states, that a LCP must hold the property that for
every tuple t, t′ (with t′ a successor of t and corresponding events e, e′, in the
‘real world’ the occurrence of e is before the occurrence of e′.
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Figure 3.12: Example of a fully deterministic automaton

For some e the occurrence of e will not always be on a predefined absolute point in time,
and therefor condition X will not hold. We will show this with an example. In this example
we use a deterministic automaton with two variable events a and b. Hence Figure 3.12(a),
in which Σ = {e1, e2} = {a, b} and T ⊂ δ = {t1, t2} = {δ(s1, a) = s2, δ(s2, b) = s3}. T is the set of
transitions which must lead to a next state. The complete set of transition functions is showed
in Table 3.4.

δ a b
s1 s2 s1
s2 s2 s3

s3 s3 s3

Table 3.4: Table of transition functions belonging to the DFA pictured in Figure 3.12(a)

Now suppose that event a is the event ‘leave coffee room’ and event b is the event ‘leave the
building’. Imagine that event a never happens, and therefor state s2 will never be reached.
This implies that, although it is likely that the donor leaves the building and thus event b will
happen, the transition to the final state will not happen. Figure 3.12(b) shows a decomposition
of the DFA, resulting in two autonomous automata. Because of the decomposition, the
transition between state s2 and s3 is independent of the transition between s1 and s2. This
implies that, when the donor ‘leaves the building’ although he hasn’t been in the coffee room,
his data will be degraded, which doesn’t comply with the origignal LCP. This LCP violates
condition X.

An example of events which do not violate the condition are time events. However, if
relative events like ‘after 10 minutes’ and absolute time events like ‘at 5 p.m.’ are used in
the same policy, the condition could easily been violated when the corresponding tuple is
acquired at 4.55 p.m.

3.6.2 Decomposition of complex policies

So far we only described a solution for the inference problem for simple sequential policies.
We decomposed the LCP in several partitions. For complex policies containing branches, this
solution is not sufficient. However, a complex policy could be seen as a policy containing
several sequential policies which can be decomposed separately. The problem is that it is not
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possible to predict which path of the policy will be followed. If we not decompose the policy,
the inference problem and the violation of the one-way property still exists.

What we propose is to hide the complex, for everyone different and thus identifiable part
of the policy. This is not very desirable, because in order to hide the policy, we also have to
hide it for the system and thus making the policy not executable. So, we can only hide parts of
a policy, leaving the current (and perhaps the next state) of the policy visible. It is, as we have
seen before, possible to decompose the sequential parts of the policy. So, if we decompose
the sequential part of the policy, that is, the part until a branch occurs in the policy, and hide
the complex part of the policy (the part after the branch), we have are close to a solution.

We can use encryption to hide the complex part of the policy. If we encrypt the parts of
the policies in such way that they are different for all tuples, they can not (like decomposition
of policies) be used to find other tuples with the same policy. An overview of encryption
techniques can be found in [22] and [4]. The keys and algorithms used for the encryption can
be kept in hardware which can be trusted (there is no human being who has to know the
keys).

When a branch is reached, and thus only the encrypted part of the policy is left, the
policy translator can be used to decrypt the next part of the policy. This action is triggered
by an event. The part which never will be reached can be removed. The part which must
be decrypted is sent back to the policy translator, together with the current data tuple. The
policy translator can decrypt the policy, and decompose the next sequential part, and attach
this to the tuple. The first state in the policy will be the construction state, as if the tuple were
inserted for the first time from a sensor.

Example

To illustrate the proposed solution, we present an example of the storage of a complex policy.
Figure 3.13 shows a policy (modeled as an automaton) which could be divided in three
main parts (P{0, 1, 4}). P1 can be divided in three subparts (P1.{1, 2, 3}). All sub policies are
sequential, and thus can be decomposed.

When the policy arrives at the policy translator, the first step is to decompose the first policy
until a branch has been reached. This is illustrated in Figure 3.14. The first part of the policy P0
consists of two states (S0 and S1), which are always reached (unless event e0 never happens,
but we keep this out of consideration). When state S1 is reached, there is a branch: depending
on event e1 or e3 a different part of the policy will be reached (either P1 or P4). Because we
don’t know which one will be reached unless e1 or e3 happens, we will encrypt P1 and P4 to
hide the complex part of the policy. When e1 or e3 occurs, we can submit either P1 or P4 to
the policy translator, which will decrypt and decompose the next part of the policy.

Suppose P4 is reached (see Figure 3.15), P4 will be decrypted and decomposed. This could
be done straightforwardly, because it is the last part of the remaining policy. The algorithm
shown in 3.15(c) describes the decomposition.

Finally, the last example is similar to the first part of the policy (see Figure 3.16). With this
technique, using a policy translator, all policies can be split in sequential parts which can be
decomposed. By using decomposition in combination with encrypting, all policies and part
of policies belonging to different tuples are distinct, and thus can’t be used to match tuples
to retrieve data.
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Figure 3.13: Example of a complex policy. The policy is modeled as an automaton with two branches.
The automaton is divided in three sub policies (P{0, 1, 3}), sub policy P1 is again divided in three
sub-sub policies (P1.{1, 2, 3}).
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Figure 3.14: Decomposition of P0

3.7 Post-processing of policies

As briefly mentioned in the previous section, dependening on the moment when a LCP
is attached to context data, the LCP may contain transitions or states which could cause
troubles. This is clearly illustrated by Figure 3.17. In this example, a LCP is specified in which
data is degraded twice: the first degradation step must be one hour after acquisition time,
the second step at a fixed time (5 p.m.). If the data tuple is acquired and the specified LCP
attached to it at 2 p.m., everything goes well. The first degradation step will take place at 3
p.m., the second step at 5 p.m.. But, if the data tuple is acquired within one hour before 5 p.m.,
the degradation step caused by the event ‘5 p.m.’ will not take place. The automaton is still
in the first state at the moment that it will become 5 o’clock, waiting for the event ‘after 1
hour’. When this event finally happens, it is already past 5 p.m. so this event will not happen
anymore. Hence this policy will not hold the condition stated in section 3.6.1.
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fi

(c) Pseudo code

Figure 3.15: Decomposition of P4
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if e2

then

delete(S2)
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then

delete(S3)

submit(P1.2)

else if e9

delete(S3)

submit(P1.3)

fi

(c) Pseudo code

Figure 3.16: Decomposition of P1.1

To bother donors with this problem by letting themself be responsible for specifying a
correct LCP is probably not the best solution. It is better to post-process policies at the moment
that the data is acquired and the policy is attached to the context data. At that time, more
information is available to be able to check the LCP for possible conflicts. In Figure 3.17, two
possible solutions are proposed. Solution A is perhaps the most simple: an extra transition
is added to make the automaton deterministic. When the automaton is deterministic, it will
response always, no matter when the tuple is acquired. However, one major drawback of this
solution is that a branch is introduced, still making the simple decomposition of sequential
policies not possible.

Solution B is more satisfactory. This solution takes the time when the tuple is acquired
into account, and, if needed, removes malicious states and transitions. If the tuple is acquired
within one hour before 5 p.m., the first event to happen will be 5 p.m.. Because of the property
that S2 D S3 (S2ismoreaccuratethanS3), S2 can be removed without violating the purpose of
the original LCP.

The LCPs specified by donors (or organizations) could been seen as a mold. The policy
translator can be used to process the policies to remove possible conflicts. Conflict detection
must then be possible. To make conflict detection possible, the semantics of the specified
transitions must be clear. For time transitions, this is not to difficult, as shown in the next
example:
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S2S1 S3

After 1 hour At 5 pm

S1 S3

At 5 pm

IF (current_time > (5 pm – 1 hour))

S2S1 S3

After 1 hour At 5 pm

At 5 pm

A

B

Figure 3.17: Conditional transformation of a LCP. When a tuple is acquired within an hour before 4
p.m., the intermediate state could be skipped.

Example: A simple mold could be the following LCP:

Q = {s0, s1, s f } = {(1, 1, 1), (4, 1, 1), (4, 4, 4)}
Σ = {t1, t2} = {a f ter 1 hour, at 5 p.m.}
δ(s0, t1) = s1
δ(s1, t2) = s f

This mold can be represented with the following encoding which can be understood by a
policy translator:

S = {(1,1,1),(4,1,1),(4,4,4)}

T = {now()+01:00, 17:00}

The keywords a f ter and at are interpreted as possible modifiers, where the first denotes adding
the specified time value to the current time. The keyword a f ter makes clear that the following
time value is an absolute transition time.

The mold can now simply be processed as follows:

for i in (1 .. count(T)-1)

if (T(i) > T(j))

remove(S(i));

remove(T(i));

end

Also the inference problem can possibly be reduced by post-processing of policies. This
is because the inference problem is caused by the fact that tuples can be identified by their
policies, if the policy is unique (or almost unique). We can use k-anonymity algorithms to
check if an incoming policy is sensible for the inference problem [31]. If the policy appears to
be used by to view donors, the policy could be altered to met the k-anonymity requirements.
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3.8 Distribution of policies

In section 3.1.1 we mentioned that an Ambient Intelligence environment could consist of
many smaller AmI-spaces, each containing its own context database and sensors. This implies
that data stored in context databases must be distributed across the AmI-spaces if a donor
moves from one to another AmI-space. However, if data moves between databases, also their
corresponding policies must be distributed, to make it possible that the new container of the
data can degrade the data according to the LCP.

In this section we will not go into detail about how to distribute the data and the policies
themselves. We will however take a look on one particular problem: how to ‘monitor’ events,
if the events take place in an other AmI-space. In section 3.1.1 we specified three types of
events: internal, universal and external. For this problem, internal are not an issue as they
always take place within the AmI-space. Universal events can also be monitored everywhere
(hence time events), and therefor don’t form a problem.

External events are events which will take place outside the AmI-space in which the data is
acquired. If a transition in a LCP must be triggered by such an external event, communication
is needed between the current AmI-space and the AmI-space in which the event can be
monitored. Otherwise the event will not be monitored at all, and the LCP will get stuck in a
state so that the context data will never be degraded further.

Example: Figure 3.18 shows two AmI-spaces, each ‘covering’ one floor in a
building. Person X is on floor A at the moment when its location is monitored
by the sensors of that floor, and his LCP is attached by the policy binder. The
data is stored, together with the policy, in the context database of floor A. The
LCP states that after a short period, the data must be degraded. When the
donor leaves the building, the data must be degraded further to the final state.
Now imagine that the donor moves from floor A to floor B, and finally leaves
the building. With the movement from the first to the second AmI-space, the
context data and its corresponding policies are copied between the two AmI-
spaces (although it is not always necessary or there is always a reason to copy
or move context data, we simply assume that it is the case now). The event
leave the building is monitored at the border of the AmI-space of floor B, and is
therefor an external. The AmI-space of floor B can degrade the data, but floor
A can not because it doesn’t know the event has occurred.

This problem could be solved with different strategies. We could for example broadcast
all events to the AmI-spaces where the donor comes from. This implies that each AmI-space
must keep a history of previous AmI-spaces of each donor. Besides the fact that this implies
a lot of overhead, it is very privacy sensitive, something we want to prevent instead. Simply
broadcasting all events to all AmI-spaces needs an infrastructure in which all AmI-spaces
are connected with each other. Something which is not very likely to happen.

When a donor is out of sight for the sensors of the AmI-space, it not possible anymore
to know when data must be degraded if external events are involved. When a donor crosses
the border of the AmI-space, all events in the LCPs of the donor managed by the AmI-space
could be scanned for possible problems. The events which cannot longer be monitored can
now be processed as shown in Figure 3.19.
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Figure 3.18: Distribution op events through several AmI-spaces. Person X moves from the AmI-space
on ‘Floor A’ to the AmI-space on ‘Floor B’. Both floors are part of the same building.
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Figure 3.19: Transformation of LCPs containing external policies



Life-Cycle Privacy Policies for the Ambient Intelligence 37

Chapter 4

Performance evaluation of the LPC
model

In this section, we present a brute-force instantiation of the LCP model on top of the Post-
greSQL RDBMS. The goal of this implementation is to investigate the feasibility of the
technique and to make the LCP model hopefully more understandable; the goal is not an
in-depth performance evaluation.

4.1 ‘Brute force’ implementation

We define a brute force implementation as an implementation which is not optimized in
any way, although the brute force approach still seems to be useful as a ‘base’ for further
implementations. It is ‘not-optimized’ in the sense that it does not contain optimization
techniques on top of the normal use of indices and de-normalized schemas.

The core of our brute-force approach is to pre-compute all degraded fields for each newly
incoming triplet according to donor-specified life-cycle policies, and store them together
with the most accurate original ones. For performance consideration, we use a flat fact table to
accommodate different-leveled context states within one tuple. A fact table is a table storing
all context data.

As said a few times before, it is necessary to know the relations between GUID, group,
department and university in order to do the degradation. This knowledge is not privacy
sensitive and in most cases freely available to everyone, and therefor can be attached to
the policies (for example by the policy binder, see section 3.1.1). Thus, if we are allowed
(according to the LCP) to store the GUID of a donor, we can also store the group value,
department value, etcetera. This is shown in table 4.1 with example data corresponding to
states (4, 1, 4),(1, 1, 1),(4, 4, 4) and (2, 2, 2) respectively. Hence the attributes of the fact table

ms s hour day GUID group dept uni coor room floor building
null null null 20-08 0109 DB EWI UT (30,50) 3070 3 ZI

20-08 12:45:30.001 20-08 12:45:30 20-08 12 20-08 0109 DB EWI UT (30,50) 3070 3 ZI
null null null 20-08 null null null UT null null null ZI
null 20-08 12:45:30 20-08 12 20-08 null DB EWI UT null 3070 3 ZI

Table 4.1: Example of a filled fact table

consist of the dimensions and their granularity of the cube from section 3.2.2. This approach
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Figure 4.1: Example of the degradation process. Sc is the current state, tn the next transition time, Sn
the next state, T a set of upcoming transition times and Q a set of upcoming states

leads to a lot of redundancy. However, for simplicity and especially for performance matters,
it is a useful approach. It certainly makes data degradation quite easy. When degradation
happens, we only have to delete the accurate value from the database by setting NULL to the
corresponding columns, and keep the less accurate ones. This is illustrated in Figure 4.1. The
additional columns denote the current, next and following states.

To know when and which tuples must be degraded and how to perform the degradation,
we need to attach life cycle policies to individual tuples. There are many ways yo accomplish
this, for example, by encoding the current, next, and following states and transitions as
strings and push them into one or more attributes of the fact table. However, we simulate
such a degradation behavior through an additional script table, in which we store a list of
SQL update statements for tuple’s future degradation. Along with the insertion of every new
incoming context tuples into the Context-DB, a sequence of update statements plus their
trigger events for its degradation will be recorded in the script table according to the donor’s
life cycle policy. By querying, fetching, and executing the corresponding update statements
from this script table, the degradation process can then be implemented:

1 while ( 1 ) {
2 updates [ ] = ” s e l e c t update statements
3 from s c r i p t t a b l e
4 where event has taken place ” ;
5 foreach update ( updates ) {
6 execute update ;
7 }

8 }

Listing 4.1: Pseudo-code of the degradation process

4.2 Simulation studies

To investigate the feasibility of the proposed techniques, we performed several simulations
to evaluate the performance of a DBMS adopting the life cycle policies, where the extra
cost increase mainly comes from the degradation process for every incoming context tuple,
i.e., updating the existing context tuple according to a life cycle policy when certain events
happen until the final context state has been reached. The simulations simulates as close
as possible the brute force approach as described in the previous section. For simulation
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purposes, we choose random tuples which must be degraded instead of using real events.
The overall workload of the database system includes dealing with users’ normal query

requests, plus continuously insertion of new context tuples as well as their degradation
updates. We interleave database query requests with insertion and update operations. The
whole stream of SQL statements processed by the database, consisting of N arrived tuples, Q
times N queries and N times the number of steps in the policy S statements can be presented
as follows:((

i f act; iSscript; qQ
f act

)U
; qscript; uU×S

f act ; dscript

)N
U

i f act = insert statement (for inserting a new context tuple into the fact table)
iscript = insert statement (for writing an update statement into the script table)
q f act = query (for querying the fact table (a users’ normal query requests))
qscript = query (for querying the script table to fetch a update statement)
u f act = update statment for updating a tuple in the fact table (for degradation)
dscript = delete statement (deleting an update statement from the script table)
U = Number of inserts preceding a degradation run
S = Number of degradation steps of the policy
Q = Number of queries after each incoming context tuple
N = Total number of incoming context tuples

Example: In Appendix A an example of a SQL stream is shown, with the
parameters N = 4, U = 2, S = 2 and Q = 2. This results in 4 insert statements
in the fact table (simulating 4 newly acquired tuples), 8 insert statements in
the script table (each tuple will be updated S = 2 times, because the LPC
has 2 degradation steps), 8 queries on the fact table (with every acquired
tuple 2 queries will be executed), 2 select statements on the script table (after
every 2 acquired tuples there is an ‘degradation run’), 8 update statements
on the fact table (in each ‘degradation run’ 4 tuples are updated) and 2 delete
statements in which each time 4 tuples are removed from the script table (in
each ‘degradation run’ a delete statement is executed).

Now assume T is the time needed for the execution of all the above mentioned SQL
statements. The number of inserts per second can now be calculated as N

T , and the number
of queries per seconds as N×Q

T . Considering that querying is one of the most fundamental
operations in any database system, the performance measure we used is the number of
queries per second (query throughput) which can be executed with a given number of
inserts per second (arriving rate of context data).

We compared the performance with that of a traditional database system without degra-
dation policies, whose main workload consists of querying and inserting into the fact table.
In our tests we set U = 5, N = 5000 and vary the value of Q over [0 . . . 64].

The first test simulates the degradation process on top of a databases filled with 200.000
tuples. The degradation process processes LCPs with 3 states (2 degradation steps, S = 2).
We compared the performance of the database with and without degradation. Results are
shown in Figure 4.2. The performance of the system is negatively influenced due to the
extra updating workload for degradation. Of course this is not surprising. The second test
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Figure 4.2: Comparison between a medium sized database implementing LCPs with S = 2, and a
database without data degradation.

simulates different complexities of policies, varying the number of degradation steps on
[1 . . . 4]. Figure 4.3 clearly shows that the higher the complexity, the worse the performance.
This is easily explained because of the larger number of updates which must be performed.
The third test simulates the degradation process on different sized databases with 30.000,
200.000, 400.000 and 750.000 tuples. The results (shown in Figure 4.4) give an indication of
the scalability of the system, which is quite linear.

In Section 3.6 we described a method to overcome the inference problem as described in
Section 3.4.2. Decomposition has an impact on the stream of SQL statements needed to sim-
ulate the degradation process. First, decomposition implies that tuples are inserted multiple
times, depending on the number of partitions the original LPC is cut. In the extreme this will
be S parts, which we will simulate here. Second, in stead of updating tuples in the fact table,
tuples are now deleted. This results in the following stream of statements:((

iSf act; iSscript; qQ
f act

)U
; qscript; dU×S

f act ; dscript

)N
U

We compared a simulation with the decomposed LPCs with the original simulations. Re-
sults are shown in Figure 4.5. Surprisingly, results are similar, indicating that decomposition
does not lead to a degradation of performance. This could possibly be explained with assum-
ing that the database management system efficiently buffers the new tuples, writing them at
once to the hard disk. It is also possible that, if the DBMS is ‘smart’, it processes inserts and
delete statement in one I/O operation.
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Figure 4.5: Comparison of degradation process with and without decomposition of LCPs

4.3 Implementation studies

Besides the simulation studies we also built an actual implementation of the brute force
technique, in both the languages Perl and Java, to study the impact of degradation from an
implementation point of view. Although the LPC model itself supports events other than
only time events, we will only use those time events in our implementation.

PostgreSQL DBMS

Degradation process Query process Population process

Figure 4.6: Simplified architecture of the test platform

Three external scripts execute statements on the PostgreSQL database management sys-
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tem. According to the brute force technique, the context database itself is implemented by
two separated tables: one to contain the location data (the fact table), and one for storing
update statements and time values to specify when the update statements have to be executed
by the degradation process. The database schema is:

fact table (fact id, ms,s,hour,day,GUID,group,dept,univ,coor,room,floor,building)
script table (fact id,time,update statement)

As you can see, we don’t attach the automaton directly to the fact tuples. Instead, we use
a script table in which we store all updates that have to be performed to comply with the
degradation policies. These policies are represented as an array of states and transition times.
States are expressed as tuples containing the accuracy levels of the three dimensions time,id
and location. For each policy, the degradation steps have to be precomputed so they can be
contained in SQL update statements. The following pseudo-code shows how an array of
values (t1, t2, t3, t4, id1, id2, id3, id4, l1, l2, l3, l4) is degraded:

1 funct ion degrade ( s t a t e , values [ ] org ) {
2 t i m e s t a t e = s t a t e ( 1 ) ;
3 p e r s s t a t e = s t a t e ( 2 ) ;
4 l o c s t a t e = s t a t e ( 3 ) ;
5 values [ ] newValues = { } ;
6 i = 1 ;
7 while ( length ( values ) >= 0 ) {
8 my value = pop values ;
9 i f ( i < t i m e s t a t e ) {

10 push newValues , n u l l ;
11 } e l s i f ( i > 4 && i < p e r s s t a t e ) {
12 push newValues , n u l l ;
13 } e l s i f ( i > 8 && i < l o c s t a t e ) {
14 push newValues , n u l l ;
15 } e l s e {
16 push newValues , value ;
17 }

18 i ++;
19 }

20 return newValues ;
21 }

Listing 4.2: Pseudo-code of degrading context data

All values tn,pm,lk, with n ≤ 4, 4 < m ≤ 8 and 8 < k ≤ 12 are made null, if the corresponding
index is smaller than the specified state (time state, pers state, loc state). These values could
now be used to create an update statement:
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9 a t t r i b u t e s = {ms, s , hour , day , guid , group , . . . }
10 s q l = ”update f a c t t a b l e s e t ”
11 f o r i =0 , i < length ( values ) , i++{
12 s q l += a t t r i b u t e s [ i ] + ”=” + values [ i ] + ” ,”
13 }

14 chop ( s q l )

Listing 4.3: Pseudo-code of creating an update statement

The degradation process could now simply be expressed as an continuous loop that checks
transition times, and executes corresponding update statements:

15 while ( 1 ) {
16 updates [ ] = ” s e l e c t update statements
17 from s c r i p t t a b l e
18 where time < now ( ) ” ;
19 foreach update ( updates ) {
20 execute update ;
21 }

22 }

Listing 4.4: Pseudo-code of the degradation process

Querying the database will be done by a multi-threaded application. Each thread simulates
an application which queries the database. The scripts will run on the same server as the
database server.

4.3.1 Expectations

If we insert, query and update the database always as fast as possible, e.g. apply a maximum
load on the database without the use of scheduler, the following equation always applies

cost(TA(t)) = maximum load = cost(TB(t))

This means that the cost of the total number of transactions T at time t without degrada-
tion (A) must be equal to the number of transactions at time t with degradation (B). If we
divide the transaction into queries, insertions and updates, we get:

a ∗ qA
F (t) + b ∗ iAF (t)︸                ︷︷                ︸

without degradation

= a ∗ qB
F(t) + b ∗ iBF(t) + c ∗ qB

S(t) + d ∗ iBS(t) + e ∗ uB
F(t)︸                                                         ︷︷                                                         ︸

with degradation

with

a, b, c, d, e =costs of transaction
qF(t) =total number of query’s on the fact table at time t
iF(t) =total number of inserts in the fact table at time t
iS(t) =total number of inserts in the script table at time t
uF(t) =total number of updates of the fact table at time t
qF(t) =total number of query’s on the script table at time t
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We can find the performance loss due to the degradation process with the following equation:

loss =
(a∗qA

F (t)+b∗iAF (t))−(a∗qB
F (t)+b∗iBF (t))

a∗qB
F (t)+b∗iBF (t)

In this statement we have to specify an a and b, to calculate the actual performance loss.
An approach could be to specify the ratio (α) between querying the fact table and inserting
into the fact table. Without any insertion, the number of transactions per second (Tps) will
be:

Tps =
qwithout inserting

t

If we, while querying, also insert tuples in the fact table, the total number of transactions per
seconds will be:

Tps =
qwith inserting

t + α · iF
t

This equation thus only defines that inserting will be α times slower than querying. We
can find αwith:

qwithout inserting = qwith inserting + α · iF ⇔
α =

qwithout inserting−qwith inserting

iF

Say we found that querying the database, without inserting, is performed with 500 queries
per second. When we ran the test again, this time with inserting tuples, we found that query-
ing was performed with 400 queries per second, and inserting with 10 tuples per second. We
now are able to calculate α:

500 = 400 + α · 10⇔
α = 500−400

10 = 10

This will tell us that inserting a tuple is 10 times more costly than querying. We now can use
our α to determine the performance loss when we use a context database with degradation
of data. The following holds:

qA
F + α · i

A
F 〉 qB

F + α · i
B
F

This statement says that querying and inserting into the fact table without the degrada-
tion process running will always be faster (in terms of queries and insertions per second)
than with degradation.
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Example: from some of our tests, we know that without degrading 50
tuples per second are inserted in the fact table, and 500 queries per second
are executed. With degradation however, insertion speed is much lower (9
tuples per second) but querying is much faster: 650 queries per second. If we
fill in this values, and use an α = 10, we will find the performance loss:

loss =
(qA

F+α·i
A
F )−(qB

F+α·i
B
F )

qB
F+α·i

B
F

⇔

loss = (500+10·50)−(650+10·9)
650+10·9 ≈ 35%

4.3.2 ’Implementation studies’ test results

The results of the test performed by the scripts shows us the behavior as predicted by our
database model, as could be seen from Figure 4.7. At first glance one could say that a context
database with degradation techniques for preserving privacy has better performance than a
traditional database. Indeed, the total number of transactions of the database with degrada-
tion is higher than without degradation: about 675 queries plus 10 inserts per second against
about 500 queries plus 80 inserts per second for the traditional database without degradation.
But, if we apply these numbers into our model, the following must be true otherwise our
model is not correct:

500 + α · 80 〉 675 + α · 10

We didn’t measure the correct value of α yet, but perhaps we can derive it from traditional
database theory. If we imagine that the (simple) query can use the index to find the correct
tuple, and if we assume the index is not in cache memory, it takes the depth of the B-tree index
in I/O costs to find the address of the tuple, and one additional I/O to retrieve the result [21].
Total I/O operations will thus be 3. The insert operation however, has to update several in-
dices (one primary key index on fact id, and the twelve indices for the dimensions and their
granularities of the cube). Again, assuming that the indices are not in cache and that they will
be written back immediately to disk, this will take at most 2 times 13 I/O operations. The write
of the insert itself will take one additional I/O. The total cost could thus be 27 I/O’s, which is 9
times more than the cost of the query. If we now say thatα = 9, we can validate the test results:

500 + 9 · 80 > 675 + 9 · 10⇔
1220 > 765

Whit this test we show that our model is not be invalidated by the test results. Nevertheless,
these test results are not very useful to specify a baseline of the performance of the brute force
degradation process. We could say, if we compare the above costs, that with degradation
we lose about 37%. However, we are, if we rely on the Postgres load balancing, not able to
measure the number of queries per second with changing insertion rates. In theory, we can
therefor use the scheduler technique as will be described in Section 4.3.3.

4.3.3 Scheduler

Querying, inserting and degradation are three processes which will concurrently send state-
ments to the databases. Normally the scheduler of the DBMS chooses which statements are
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Figure 4.7: Queries per second and insertion rates with and without degradation, using Perl and Java
scripts to simulate the degradation process, inserting and querying.

executed in which order, without giving priority to one or another process. However, we
have to ensure that the degradation policies are applied, so we have to ensure that the up-
date statements always are executed on time. This is why we need to implement a scheduler
ourselves. A scheduler can be used to give priority to the degradation process when needed,
and allow queries to be executed if there is enough room to do so.

To implement a scheduler, we will use a query buffer. All incoming queries will be stored
in the buffer, until the buffer is full. Queries in the buffer will be consumed by the scheduler,
if the degradation process has nothing to do, or when a similar but less strict criterion holds.
The use of a buffer and scheduler is illustrated in Figure 4.8.
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if #updates > 0
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do updates
else

do query

QueryBuffer

Figure 4.8: Schematic overview of a schuduler and a query buffer. Applications are issueing queries,
which will be pushed on a query buffer. The schedular consumes queries in the buffer according to a
first in first out (fifo) strategy.
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Chapter 5

Future work

Although we already addressed several problems with the LCP model, there are a number
of open issues which must be solved in future work. In this section we briefly summarize
the main issues, starting with querying a multi-accurate data set.

5.1 Querying the database

Although we mentioned the problem in the problem definition, we were not able to give much
attention to how to query data with different accuracies. In an ideal situation, the applications
(the users of the stored data) are unaware of the fact that they use a privacy preserving context
database. Thus, we want to create a situation in which the privacy preserving capabilities are
transparent for the applications.

Example: Let us assume that the application only sees a fact table with the
three attributes time,person and location, but has the same environment knowl-
edge as the context database. Thus, we assume that applications also know
what buildings there are, what the relation is between group and department,
etcetera. Consider the following query:

select person

from fact table

where building = Zilverling

and time between 10 pm and 11 pm

(select all persons who are in building ’Zilverling’ between 10 and 11 pm)

This query could produce different answers, highly depending on the states of the donor’s
degradation policies. We could for example return a mixed result set, with the most accurate
values of which are available from a donor. An example is given in Table 5.1. This approach
is not conform our ‘transparency’ statement, because we have to send accuracy information
along with the actual results. How to solve this problem is subject to future research. The
decomposition techniques as described in section 3.6 make things even worse. Copies of data
are inserted multiple times in the database, making aggregations like ‘give me the number
of persons in the building’ even more hard.
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accuracy person
GUID 2178
dept EWI
dept EWI

GUID 0109
univ UT
univ UT
dept GW

group DB

Table 5.1: Mixed result set of persons

5.2 Rich generalization schemes

The generalization schema as contained in Life Cycle Policies are focused on one particu-
lar group of purposes. Different application domains could require different generalization
schemes.

Example: The generalization schema of the identification value can start with
the license plate number of a car. This value could be degraded to ‘brand
of the car’ (e.g. Toyota, Mercedes, DAF, etcetera), and finally to the type of
the car (e.g. Truck, Van, Car, etcetera). For the carpooling example given in
section 3.3.2, this schema is sufficient. If the same location data is used by
other kind of applications, the generalization schema for the identification
value is likely to be different, for example: personal identification number→
team→ group→ university.

How to specify (richer) generalization schemes and put them into the Life Cycle Model
could be a topic for future research.

5.3 Enforcing the degradation process

In the introduction section we mentioned the ten principles of Hippocratic databases. One
of the most important, but perhaps also the most difficult one to adopt, principles is the
compliance principle. In this thesis we proposed techniques which regulate the life cycle of a
policy, which could enhance privacy. But how can we make sure that databases will correctly
adopt this techniques, and not only promise to comply with the specified LCPs?

LCPs also do not protect against attacks on the database itself. If someone gains access
to the database and alters the LCPs, a serious privacy problem can arise. Openness for the
donors, to check their data and LCPs could therefor be very important. How to accomplish
this is subject to future research.

5.4 Two-way LCP policies

In our research we specified the one-way property, not allowing to regenerate data when it is
already degraded to a less accurate level. This implies that it is not possible to temporarily
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degrade data. For example, it could be useful to hide the current location for one week,
allowing, after that week, that particular location to be visible again. This flexibility is missing
in the current LCP model, but in the spirit of life cycle policies, could be a very useful feature
for the future. Moreover, access control mechanisms based on fine-grained micro-views
support this feature already.

5.5 Integrating the LCP model in a prototype

In this thesis, we already showed the feasibility of the LCP model in terms of performance.
This however will not guarantee that the LCP model can be adopted by a real ambient
intelligence environment. Building a prototype and integrate this into a prototype of an
ambient intelligence application could resolve many issues which must be investigate to
make the LCP model really useful.

A good test framework could be the ‘Soft meeting planner’, a project of the University of
Twente which is part of a research group doing research toward the Ambient Intelligence.
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Chapter 6

Conclusion and recommendations

In this thesis we proposed a new approach toward privacy for the Ambient Intelligence. We
specified a LCP model, in which it can be specified how and when data must be degraded.
We used automata to specify transition functions which are triggered by different kinds of
events. Each state of the automata represents a certain degree of accuracy.

We succeeded in specifying a rich model which is able to manage the life cycle of data
in order to improve protection against violating of fundamental privacy principles. We dis-
covered however that such model implies some difficulties due to the model itself. Inference
and information disclosure are problems for which we supplied solutions, although limited.
In order to support our proposal and making it more understandable, we performed an
implementation and simulation study, which showed the feasibility of our approach.

Some open issues are left out of consideration in this thesis, but are quite important for the
usability of our model in order to play a significant rôle in the development of an Ambient
Intelligence. How to query the data, how to supply richer generalization schemes are, among
other issues, main future research questions.

To investigate the real usability of the model in the Ambient Intelligence, it is useful to
build a realistic model (of a part) of an Ambient Intelligence and integrate a database using
our LCP technique. Requirements from the Ambient Intelligence in terms of the required
smartness of applications in conjunction with the possibilities and the restriction of our life
cycle privacy model can then be investigated.

Our model will not comply with every privacy requirement in the AmI, but will certainly
be a step forward toward a situation in which control of their own privacy is returned to
the people which otherwise are subject to possible privacy violations. Although many issues
must be solved, people are, with our LCP model, able to specify what must happen to their
data. To conclude, we are convinced that our approach toward solving privacy problems in
the Ambient Intelligence, using our LCP model, paves the way to new solutions to respect
individuals privacy in autonomous systems.
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Appendix A

Example of simulation SQL stream

Example stream of statements with parameters N = 4, U = 2,S = 2 and Q = 2.

1 i n s e r t into f a c t t a b l e values ( . . . )
2 i n s e r t into s c r i p t t a b l e values ( . . . )
3 i n s e r t into s c r i p t t a b l e values ( . . . )
4 s e l e c t coor , room , f l o o r , bui lding from f a c t t a b l e where f a c t i d = 136380
5 s e l e c t coor , room , f l o o r , bui lding from f a c t t a b l e where f a c t i d = 111959
6 i n s e r t into f a c t t a b l e values ( . . . )
7 i n s e r t into s c r i p t t a b l e values ( . . . )
8 i n s e r t into s c r i p t t a b l e values ( . . . )
9 s e l e c t coor , room , f l o o r , bui lding from f a c t t a b l e where f a c t i d = 195960

10 s e l e c t coor , room , f l o o r , bui lding from f a c t t a b l e where f a c t i d = 165948
11 s e l e c t ∗ from s c r i p t t a b l e where f a k e i d >= 2730 and f a k e i d < 2734
12 update f a c t t a b l e s e t ms = null , . . .
13 update f a c t t a b l e s e t ms = null , . . .
14 update f a c t t a b l e s e t ms = null , . . .
15 update f a c t t a b l e s e t ms = null , . . .
16 delete from s c r i p t t a b l e where f a k e i d >= 2730 and f a k e i d < 2734
17 i n s e r t into f a c t t a b l e values ( . . . )
18 i n s e r t into s c r i p t t a b l e values ( . . . )
19 i n s e r t into s c r i p t t a b l e values ( . . . )
20 s e l e c t coor , room , f l o o r , bui lding from f a c t t a b l e where f a c t i d = 192738
21 s e l e c t coor , room , f l o o r , bui lding from f a c t t a b l e where f a c t i d = 195489
22 i n s e r t into f a c t t a b l e values ( . . . )
23 i n s e r t into s c r i p t t a b l e values ( . . . )
24 i n s e r t into s c r i p t t a b l e values ( . . . )
25 s e l e c t coor , room , f l o o r , bui lding from f a c t t a b l e where f a c t i d = 116315
26 s e l e c t coor , room , f l o o r , bui lding from f a c t t a b l e where f a c t i d = 9418
27 s e l e c t ∗ from s c r i p t t a b l e where f a k e i d >= 4313 and f a k e i d < 4317
28 update f a c t t a b l e s e t ms = null , . . .
29 update f a c t t a b l e s e t ms = null , . . .
30 update f a c t t a b l e s e t ms = null , . . .
31 update f a c t t a b l e s e t ms = null , . . .
32 delete from s c r i p t t a b l e where f a k e i d >= 4313 and f a k e i d < 4317 ;

Listing A.1: SQL simulation stream
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Appendix B

Sample P3P policy

The following P3P policy is generated with a free available P3P editor from IBM (http:
//www.alphaworks.ibm.com/tech/p3peditor).

1 <?xml version=” 1 . 0 ” ?>
2 <POLICIES xmlns=” h t t p : / /www. w3 . org / 2 0 0 2 / 0 1 / P3Pv1”>
3 < !−− Expiry i n f o r m a t i o n f o r t h i s p o l i c y −−>
4 <EXPIRY max−age=” 86400 ” />
5 <POLICY xml:lang=”en”>
6 < !−− D e s c r i p t i o n o f t h e e n t i t y making t h i s p o l i c y s t a t e m e n t . −−>
7
8 <ENTITY>
9 <DATA−GROUP>

10 < /DATA−GROUP>
11 < /ENTITY>
12
13 < !−− D i s c l o s u r e −−>
14 <ACCESS>
15 <nonident />
16 < /ACCESS>
17
18 < !−− No d i s p u t e i n f o r m a t i o n −−>
19
20 < !−− S t a t e m e n t f o r group ” Cookies ” −−>
21 <STATEMENT>
22
23 <EXTENSION opt iona l=” yes ”>
24 <GROUP−INFO name=” Cookies ” />
25 < /EXTENSION>
26
27 < !−− Consequence −−>
28 <CONSEQUENCE>
29 Cookies are used to t r a c k v i s i t o r s to our s i t e ,
30 so we can b e t t e r understand what por t ions
31 of our s i t e bes t serve you .
32 < /CONSEQUENCE>
33
34 < !−− Use ( p u r p o s e ) −−>
35 <PURPOSE>
36 <develop />
37 <pseudo−a n a l y s i s />
38 <pseudo−d e c i s i on />

http://www.alphaworks.ibm.com/tech/p3peditor
http://www.alphaworks.ibm.com/tech/p3peditor
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39 < individual−a n a l y s i s />
40 < individual−d e c i s i on />
41 < t a i l o r i n g />
42 < /PURPOSE>
43
44 < !−− R e c i p i e n t s −−>
45 <RECIPIENT>
46 <ours />
47 < /RECIPIENT>
48
49 < !−− R e t e n t i o n −−>
50 <RETENTION>
51 <s ta ted−purpose />
52 < /RETENTION>
53
54 < !−− Base da ta s chema e l e m e n t s . −−>
55 <DATA−GROUP>
56 <DATA r e f=”#dynamic . cookies ” opt iona l=” yes ”>
57 <CATEGORIES>
58 <content />
59 <navigat ion />
60 <purchase />
61 <uniqueid />
62 < /CATEGORIES>
63 < /DATA>
64 < /DATA−GROUP>
65 < /STATEMENT>
66
67 < !−− End o f p o l i c y −−>
68 < /POLICY>
69 < / POLICIES>

Listing B.1: P3P policy
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